

REPTAR
Reconfigurable Embedded Platform for Training And Research

Quick Start Guide

REDS Institute
March 2013

Ver 1.0

REPTAR

Quick Start Guide

march 2013 - 2 - REDS

Table of Content

1. INTRODUCTION ... 5

2. GENERAL DESCRIPTION ... 6

2.1 FPGA BOARD OVERVIEW ... 7

2.2 CPU BOARD OVERVIEW ... 8

3. EQUIPMENT NEEDED ... 9

3.1 MINIMAL REQUIREMENTS .. 9

3.2 OPTIONAL REQUIREMENTS .. 9

3.2.1 For development in the embedded processor .. 9

3.2.2 For development in the FPGA Spartan6 (without embedded processor usage) 9

3.2.3 For development in the FPGA Spartan3 ... 9

4. SOFTWARE AND FILES NEEDED .. 10

4.1 FOR DEVELOPMENT IN THE EMBEDDED PROCESSOR ... 10

4.2 FOR DEVELOPMENT IN THE FPGA SPARTAN6 OR IN THE FPGA SPARTAN3 10

5. DOCUMENTS NEEDED.. 11

6. MAIN PROCEDURES STEP-BY-STEP ... 12

6.1 SETUP OF THE BOARD .. 12

6.1.1 Jumpers .. 12

6.1.2 DIP switches on FPGA board .. 14

6.1.3 DIP switches on CPU board .. 15

6.2 PROCEDURES FOR DEVELOPMENT IN THE EMBEDDED PROCESSOR WITH OS OR RTOS 16

6.2.1 Getting started ... 16

6.2.2 Using U-boot... 16

6.2.3 Preparing a “Master” SD card .. 21

6.2.4 Booting from SD card ... 22

6.2.5 reptar_soft compilation.. 22

6.3 PROCEDURES FOR DEVELOPMENT IN THE EMBEDDED PROCESSOR WITHOUT OS 25

6.4 PROCEDURES FOR DEVELOPMENT IN THE FPGA ... 25

6.4.1 Using the REPTAR base project .. 25

6.4.2 Using the REPTAR standard project ... 26

6.4.3 ISE project compilation ... 27

6.4.4 Spartan3 programming .. 27

6.4.5 Spartan6 programming .. 30

6.4.6 Platform Flash programming ... 31

REPTAR

Quick Start Guide

march 2013 - 3 - REDS

6.5 PROCEDURES FOR MIX DEVELOPMENT USING EMBEDDED PROCESSOR AND FPGA 34

6.5.1 Board setup .. 34

6.5.2 Using the Local Bus ... 35

6.5.3 Using the REPTAR standard ISE project .. 36

6.5.4 Programming the SP6 from the CPU .. 37

7. TROUBLESHOOTING .. 40

8. ADDITIONAL INFORMATION .. 41

8.1 REVISION HISTORY ... 41

8.2 CONTACT .. 41

REPTAR

Quick Start Guide

march 2013 - 4 - REDS

Figures Table
FIGURE 1 - FPGA BOARD DETAILS 7

FIGURE 2 - CPU BOARD DETAILS 8

FIGURE 3 – JUMPERS ON CPU BOARD 12

FIGURE 4 – JUMPERS ON FPGA BOARD 13

FIGURE 5 – DIP SWITCHES ON FPGA BOARD 14

FIGURE 6 – DIP SWITCHES ON CPU BOARD 15

FIGURE 7 – REPTAR FPGA, SP6 AND SP3 CONFIGURATION LEDS AND BUTTONS 28

FIGURE 8 – REPTAR FPGA, JTAG HEADERS AND SMT MODULE CONNECTOR 29

REPTAR

Quick Start Guide

march 2013 - 5 - REDS

1. INTRODUCTION

This document provides the most important information needed to start using the
REPTAR board.

The REPTAR datasheet and the reference manual provide a detailed description of the
board and it’s strongly recommended to read both documents before this guide.

This guide applies only to the Proto II and Series I REPTAR board versions.

REPTAR

Quick Start Guide

march 2013 - 6 - REDS

2. GENERAL DESCRIPTION

The REPTAR board was designed in the REDS Institute of the HEIG-VD in 2012/2013.

REPTAR combines an OMAP type processor (which itself consists of a cortex-A8 ARM
and a DSP) with a programmable logic component (FPGA) Xilinx Spartan 6.

The platform also includes a large number of control, display and communication
devices.

The platform may be used in different ways:

 Use of the embedded processor with OS or RTOS without using the FPGA (the
peripherals connected to the FPGA are not used)

 Use of the embedded processor without OS and without using the FPGA (the
peripherals connected to the FPGA are not used)

 Use of the FPGA without using the embedded processor (the peripherals
connected to the embedded processor are not used, and the CPU board may not
be present)

 Co-design or Mix development using embedded processor and FPGA (all
peripherals on the board are accessible)

REPTAR is a board that offers enough flexibility to customize your development
environment via many expansion connectors, I/O and daughter cards.

The REPTAR board is made of two boards: The CPU and the FPGA board

The FPGA board is considered as the mainboard of the REPTAR system. All the power
supplies are located on this board. The CPU board is then considered as a daughter
card for the system itself.

REPTAR

Quick Start Guide

march 2013 - 7 - REDS

2.1 FPGA BOARD OVERVIEW

The picture below shows the main features of the REPTAR FPGA board.

Figure 1 - FPGA Board details

Board-to-board
connectors
(J2 & J3)

80-pin connector (J5) General User Interfaces

Incremental Encoder
(SW13)

UART (J4)

CAN bus

Light & Temperature
sensors (U22 & U20)

High-speed interface @ 3GHz
External Sata 1 connector

4 ch. ADC 12bit
4 ch. DAC 12bit

Mictor connectors for
debugging
(J31 & J48) FMC expansion

connectors
(J7 & J6)

256MB DDR2 Memory (U14)

Xilinx Spartan 6 (U12)

Xilinx PlatformFlash (U36)

Main JTAG chain

Xilinx Spartan 3AN

Spartan6 JTAG

Spartan 3AN JTAG

Main power switch (S1) &
DC Power Input (J1)

LCD 4x20 lines

GPS/3G and SIM
(below the LCD)

REPTAR

Quick Start Guide

march 2013 - 8 - REDS

2.2 CPU BOARD OVERVIEW

The picture below shows the main features of the REPTAR CPU board.

Figure 2 - CPU Board details

MIC (J1)

Wifi Antenna
connector (J14)

UART connection for CPU
debugging (J43 & U11)

2 x USB Host (J50)

Line In (J2) Line Out (J3)

2 x USB Host (J51)

Ethernet 100Mbit (J13)

1 x USB OTG (J48)

Resistive
Touch screen
connector (J11)

Reset CPU (S1)

General User Interfaces

JTAG connector for CPU
debugging (J29)

HDMI Output
connector (J8)

2 x USB Host (J52)

TFT Display con. (J8)

Capacitive
Touch screen
connector (J12)

SD Card connector at
bottom (U10)

200 pins SODIMM
connector for CPU
module (U1)

Wifi module at
bottom (U20)

REPTAR

Quick Start Guide

march 2013 - 9 - REDS

3. EQUIPMENT NEEDED

The list below give you a detail of the equipment needed for doing embedded
development with REPTAR.

3.1 MINIMAL REQUIREMENTS

 REPTAR board
 DC power supply 12V – 3A
 2 x banana-plug cables

3.2 OPTIONAL REQUIREMENTS

The optional requirements depend on how you use the board.

3.2.1 For development in the embedded processor

 PC with USB ports
 mini USB cable (for UART communication with the processor)
 Optional: SIM card

With OS

 SD card (to store the File System and the kernel or only the File System)
 SD card reader

Or
 PC with network cards
 Ethernet cable (to use NFS, Network File System)

Without OS
 Blackhawk USB100v2 JTAG emulator (for ARM debug) + mini USB cable

3.2.2 For development in the FPGA Spartan6 (without embedded processor
usage)

 Xilinx Platform Cable USB or USBII
Or

 Micro USB cable

3.2.3 For development in the FPGA Spartan3

 Xilinx Platform Cable USB or USBII

REPTAR

Quick Start Guide

march 2013 - 10 - REDS

4. SOFTWARE AND FILES NEEDED

The software required depends on how you use the board.

4.1 FOR DEVELOPMENT IN THE EMBEDDED PROCESSOR

With OS

 PC running Linux
 For development on x-loader, u-boot or Linux kernel: REPTAR BSP available on

the GIT repository reptar_soft
 For SD card image creation: Packages python2, python-parted, uboot-

mkimage
 Rootfs archive (available on http://eigit.heig-vd.ch/public/rootfs/reptar/ or on

SD card)
 Optional: NFS server for remote loading of kernel and/or rootfs
 Optional: tftp server for remote loading of kernel and/or rootfs
 Optionnal: Examples, demos and tests programs available on the GIT

repository reptar_usr

Without OS

 Code Composer Studio 5 available on the net or at
\\eistore0\Softs-REDS\Embedded\CodeComposerStudio

 Toolchain arm-2011.03-42-arm-none-eabi available on the net or at
\\eistore0\Softs-REDS\Board_Support_Package\Toolchains

 Tests programs available on the GIT repository reptar_usr folder

\tests\standalone

4.2 FOR DEVELOPMENT IN THE FPGA SPARTAN6 OR IN THE FPGA SPARTAN3

 Xilinx ISE design suite 13.3
 Standard VHDL descriptions and ISE project for REPTAR

http://eigit.heig-vd.ch/public/rootfs/reptar/
file://eistore0/Softs-REDS/Embedded/CodeComposerStudio
file://eistore0/Softs-REDS/Board_Support_Package/Toolchains

REPTAR

Quick Start Guide

march 2013 - 11 - REDS

5. DOCUMENTS NEEDED

 Components datasheets, design guidelines, standards, etc. provided by the
manufacturers or found on the net.

 Documents created by the REPTAR developers: REPTAR presentation, datasheet,
Reference Manual, board schematics, U-boot Tests Details, Linux Tests Details,
this guide

You can find additional information on the wiki web page at (no public access):
https://eigit.heig-vd.ch/projects/reptar/wiki/Wiki

Specific information about REPTAR software:
https://eigit.heig-vd.ch/projects/reptar/wiki/Software

Specific information about REPTAR hardware:
https://eigit.heig-vd.ch/projects/reptar/wiki/Hardware

https://eigit.heig-vd.ch/projects/reptar/wiki/Wiki
https://eigit.heig-vd.ch/projects/reptar/wiki/Software
https://eigit.heig-vd.ch/projects/reptar/wiki/Hardware

REPTAR

Quick Start Guide

march 2013 - 12 - REDS

6. MAIN PROCEDURES STEP-BY-STEP

6.1 SETUP OF THE BOARD

6.1.1 Jumpers

Before using REPTAR, please verify that the jumpers are placed like on the images bellow
(shown by red, blue or black squares):

REPTAR CPU

Figure 3 – Jumpers on CPU Board

REPTAR

Quick Start Guide

march 2013 - 13 - REDS

REPTAR FPGA

Figure 4 – Jumpers on FPGA Board

REPTAR

Quick Start Guide

march 2013 - 14 - REDS

6.1.2 DIP switches on FPGA board

Locate the different DIP switches on the image below, and then verify that each one is in
the correct position.

Figure 5 – DIP switches on FPGA Board

You can find an explanation about the DIP switches configuration in the document
DIP_Switch_Description.xlsx

Notice that there is a page for FPGA board and another one for the CPU board.

 DIP SW SP3 DIP SW SP6

 Osc. Enable

 PCIe
freq Div.

DIP_Switch_Description.xlsx

REPTAR

Quick Start Guide

march 2013 - 15 - REDS

6.1.3 DIP switches on CPU board

Locate the different DIP switches on the image below, and then verify that each one is in
the correct position.

Figure 6 – DIP switches on CPU Board

You can find an explanation about the DIP switches configuration in the document
DIP_Switch_Description.xlsx

Notice that there is a page for FPGA board and another one for the CPU board.

 HUB cfg.

DIP_Switch_Description.xlsx

REPTAR

Quick Start Guide

march 2013 - 16 - REDS

6.2 PROCEDURES FOR DEVELOPMENT IN THE EMBEDDED PROCESSOR WITH OS OR RTOS

6.2.1 Getting started

When working in the embedded processor with Linux, the most common way to use
REPTAR is loading the rootfs from an SD card and the Linux kernel image from NAND or
from the same SD card.

1. Connect the mini-USB cable between the REPTAR board and your PC. See the Figure 2
to find the UART connector on the REPTAR CPU board.

2. Insert an SD card containing a kernel image and rootfs in the reader of the REPTAR
CPU board.

3. Set-up your power supply to 12V/2A and plug the banana wires to the board.
4. Turn on briefly the board by using the ON/OFF switch. The USB port used is detected

by the PC.
5. Open a terminal on your PC and run a serial emulator like picocom with the

parameters: 115200 bauds, 8-bit data, 1 stop bit, no parity, and no flux control.
Example with picocom

sudo picocom –b 115200 /dev/ttyUSB0

6. Turn on the board, U-boot is loaded from NAND and a prompt is shown in the UART
terminal

Reptar#

7. If you want to load the kernel image from the SD card, type simply
boot

8. Otherwise, to load kernel from the NAND, type
run boot_failsafe

9. For other boot modes see explanations below.
10. For resetting the CPU module, press the “Reset” button of the REPTAR CPU board.

This button is not related to the FPGA board.

6.2.2 Using U-boot

U-boot is a universal boot-loader with full source code under GPL. You can find a lot of
information about it on the net.

In the frame of the REPTAR board it’s used principally to load Linux kernel image and
rootfs.

It also provides a simple mean to access memory in a debugging goal. You can, for
instance, read or write the DM3730 registers or, if you are using the FPGA you can
access the Spartan6 and Spartan3 registers.

To show a list of all commands available within U-boot just type

REPTAR

Quick Start Guide

march 2013 - 17 - REDS

 help

The itbok command available in the u-boot environment allows the test of many
peripherals connected to the CPU or the FPGA. You can find additional information
about the tests under U-boot in the document “uboot_tests_details”

The commands concerning the environment variables, the boot modes and the
memory access are explained hereafter.

6.2.2.1 Environment variables

The U-Boot environment is a block of memory stored in the flash and copied to RAM
when U-Boot starts. It is composed of environment variables which can be used to
configure the system and to group several commands together in order to invoke them
easily.

Some environment variables have a special meaning for u-boot, but you can also
create your own as you like.

Variables having a special meaning for u-boot, and used in the REPTAR standard
environment are:
baudrate, bootargs, bootcmd, bootdelay, ethaddr, ipaddr, loadaddr, netmask, nfsroot,
root, serverip, setargs, stderr, stdin, stdout

All other variables in the u-boot environment of the REPTAR board were created by
the REPTAR developers.

When you modify the standard uboot variables, be aware when you save them,
because you can make the board not bootable anymore!

To show the environment variables type:
 printenv

To set an environment variable type:
 setenv [variable name] [value]

To erase an environment variable type:
 setenv [variable name]

To save the changes on the environment (permanently on flash):
 saveenv

REPTAR

Quick Start Guide

march 2013 - 18 - REDS

6.2.2.2 Booting from a server

As explained before, the usual ways to boot the kernel are from the NAND or from the
SD card. When debugging your code it may be useful to boot from an NFS or tftp
server installed on your machine. This avoids flashing the REPTAR CPU board too many
times and extends its NAND lifetime. This method is also less annoying than rewrite an
SD card each time that the code is modified.

First, ensure you that tftp and/or NFS servers are installed on your host machine.

For booting from tftp server:

tftpboot 0x80000000 uImage

For booting from NFS server:

nfs 0x80000000 ${serverip}:/export/kernel/uImage

If you want to change the way the system boots by default, you must create
environments variables for each mode and then modify the bootcmd variable.

Example:

 setenv tftp_kernel "tftpboot 0x80000000 uImage"

 setenv bootcmd "run tftp_kernel"

 saveenv

6.2.2.3 Loading the file system from a server

As explained before you can load the file system from the SD card. When debugging
your code it may be useful to boot from an NFS server installed on your machine. This
method may be faster than rewrite an SD card.

First, ensure you that tftp and/or NFS servers are installed on your host machine. Then
copy your rootfs in the folder /export/fs and the kernel image uImage in the tftp
folder.

For loading the rootfs from NFS server and the kernel from tftp:

setenv nfsroot /export/fs

setenv setargs_nfs 'setenv bootargs ${bootargs_common}

 root=/dev/nfs nfsroot=${serverip}:${nfsroot}'

setenv boot_net 'run setmac setip;run tftp_kernel;run

 setargs_nfs addmac addip;bootm ${loadaddr}'

saveenv

REPTAR

Quick Start Guide

march 2013 - 19 - REDS

If you want to change the way the system boots by default, you must create
environments variables for each mode and then modify the bootcmd variable.

Example:

 setenv bootcmd "run boot_net"

 saveenv

If you want manually boot from server, just type:
 run boot_net

REPTAR

Quick Start Guide

march 2013 - 20 - REDS

6.2.2.4 Useful commands for debugging

Here is an explanation of two useful commands for memory access.

md
md [.b, .w, .l] address [# of objs]

The md command displays memory contents both as hexadecimal and ASCII data. The
last displayed memory address and the value of the count argument are remembered,
so when you enter md again without arguments it will automatically continue at the
next address, and use the same count again.
If invoked as md or md.l, data is displayed as 32-bit long words. If invoked as md.w or
md.b instead, 16-bit words or 8-bit bytes are used, respectively.

Arguments

address
memory location to display

objs
number of objects to display

mw
mw [.b, .w, .l] address value [count]

The mw command writes a value to a specific address.
When called without a count argument, the value will be written only to the
specified address. When used with a count, then a memory area beginning at
address will be initialized with this value.
If invoked as mw or mw.l, data is 32-bit long. If invoked as md.w or md.b instead, 16-bit
words or 8-bit bytes are used, respectively.

Arguments

address
first memory location to fill

value
data to write

count
number of memory locations to write

REPTAR

Quick Start Guide

march 2013 - 21 - REDS

6.2.3 Preparing a “Master” SD card

This section explains how to create an SD card containing all the binaries (X-loader, U-
boot and uImage) and the file system (rootfs) needed for running Linux on REPTAR, as
well as the programs and scripts used for tests.

Clone the reptar_soft repository in your machine, open a command-line interface
terminal and change the directory to reptar_soft.

1. Compile the REPTAR project by invoking the make command, see the reptar_soft

compilation section if needed. Your root password will be asked several times.
2. Insert an SD card in the reader of your PC.
3. If the SD card is automatically mounted, demount-it manually with

sudo umount /media/<mount_point>

4. Get the device name associated to the SD card (i.e. /dev/sdb) with dmesg | tail.
This name is necessary for the next step.
Example:
$ dmesg | tail

…

[255069.569920] sd 15:0:0:0: [sdb] 7862272 512-byte logical blocks: (4.02 GB/3.74 GiB)

[255069.571112] sd 15:0:0:0: [sdb] Assuming drive cache: write through

[255069.572853] sd 15:0:0:0: [sdb] Assuming drive cache: write through

[255069.572859] sdb: sdb1

Make sure of use the correct device name, you risk trashing your PC by using the
wrong device!

5. Start the copy of the SD image on the SD card with the device name got in the
previous step. This operation may last several minutes. Wait for the end of the copy:
results are shown on the screen and the shell prompt appears.

sudo dd if=build/sd-card.img of=/dev/sdb bs=5M

...

2048+0 records in

2048+0 records out

2147483648 bytes (2.1 GB) copied, 270.365 s, 7.9 MB/s

6. Remove the SD card from the slot and then insert-it again. Two partitions must be

mounted automatically:
/media/boot: boot FAT partition with MLO, u-boot.bin and uImage files
/media/filesystem: ext3 partition with the rootfs tree structure

7. Take the REPTAR bitstream for SP6 from the reptar repository at
reptar/public/test/FPGAs_Flashing and copy-it manually in the partition /media/boot

8. Demount both partitions before removing the SD card from the reader
9. Your SD card is now ready to be used on the REPTAR board

REPTAR

Quick Start Guide

march 2013 - 22 - REDS

6.2.4 Booting from SD card

1. Connect the mini-USB cable between the REPTAR board and your PC. See the Figure 2
to find the UART connector on the REPTAR CPU board.

2. Insert an SD card containing a kernel image and rootfs in the reader of the REPTAR
CPU board (REPTAR “Master” SD card).

3. Set-up your power supply to 12V/2A and plug the banana wires to the board.
4. Turn on briefly the board by using the ON/OFF switch. The USB port used is detected

by the PC.
5. Open a terminal on your PC and run a serial emulator like picocom with the

parameters: 115200 bauds, 8-bit data, 1 stop bit, no parity, and no flux control.
Example with picocom:

sudo picocom –b 115200 /dev/ttyUSB0

6. Press the “Boot” button of the REPTAR board.
7. Without release the button, turn-on the board. U-boot is loaded and a prompt is

shown in the UART terminal
Reptar#

10. Release the “Boot” button.
11. Verify that X-loader and U-boot have been loaded from the SD card by looking the

messages on the console

Texas Instruments X-Loader 1.51 (Jul 30 2012 - 13:19:13)
Starting X-loader on MMC

Reading boot sector
370200 Bytes Read from MMC

Starting OS Bootloader from MMC...

Starting OS Bootloader...

U-Boot 2011.09-00000-g8c918f0-dirty (Jul 30 2012 - 13:19:39)

…

6.2.5 reptar_soft compilation

6.2.5.1 Toolchain installation

The toolchain currently used for the cross-compilation is Linaro 2013.01, available at
http://eigit.heig-vd.ch/public/toolchains/

Once you have cloned the git repository reptar_soft, you can run a script to
automatically download and install the toolchain on your PC. The script can be found at
the reptar_soft/scripts folder.

To run the script:

http://eigit.heig-vd.ch/public/toolchains/

REPTAR

Quick Start Guide

march 2013 - 23 - REDS

reptar_soft$./scripts/reptar_toolchain.sh

By default, the toolchain is installed in the /opt folder, if you want to install it to another
path you can specify it like this:
 reptar_soft$./scripts/reptar_toolchain.sh /my/path

Verify that the toolchain is well installed by taping in a shell:

$ arm-none-linux-gnueabi-gcc -v

The last line of the output must be:
gcc version 4.7.3 (prerelease) (crosstool-NG linaro-

1.13.1-4.7-2013.01-20130125 – Linaro GCC 2013.01)

If the command is not found, update your PATH environment variable by adding the
folder {toolchain_path}/gcc-linaro-arm-linux-gnueabihf-4.7-2013.01-20130125_linux/bin.

6.2.5.2 Make command

When you invoke the make command from the reptar_soft folder, a complete
compilation is done (x-loader, uboot, kernel) and an SD card image is built with two
partitions: the boot partition containing all the boot binaries, and a filesystem partition
containing the rootfs with the modules installed.

In order to build an SD card image you will need a PC running Linux and the following
packages should be installed:

 Python2 (2.6 or 2.7
 python-parted
 u-boot-mkimage

The make program uses the file system by default which is automatically downloaded
from http://eigit.heig-vd.ch/public/rootfs/reptar/. This server holds also many other
rootfs archives used on the REPTAR board for demos, tests, labs and other purposes.
The default rootfs is set by the variable ROOTFS_ARCHIVE in the Makefile found at the
top level of the reptar_soft repository. Currently, the default rootfs is based on
Buildroot, and the archive used is rootfs_br_2013v1.tar.bz2

All the boards where fully tested with a rootfs based on ArchLinux its name is
ArchLinux-filesystem-tests.tar.bz2. This is why the access to all the peripherals and
the well working of every module of the board is guaranteed only with this rootfs. All
the tests will be soon supported by the new rootfs.

If you want to compile the project with a version of filesystem different from the
default version:

 If the archive is on the eigit server, just compile passing the variable
ROOTFS_ARCHIVE=<name_of_your_filesystem> as argument.

http://eigit.heig-vd.ch/public/rootfs/reptar/

REPTAR

Quick Start Guide

march 2013 - 24 - REDS

 If you want to use a locale version, copy manually the archive to
reptar_soft/filesystem and then compile passing the variable
ROOTFS_ARCHIVE =<name_of_your_filesystem> as argument.

Whenever you compile, the rootfs gift by the ROOTFS_ARCHIVE variable is search first
locally at the reptar_soft/filesystem folder, and if it is not present, then it is search on
the eigit server.

To compress a rootfs keeping the symbolic links:

 from the command-line change the directory to the filesystem root and then
type

 sudo tar –cjpf ../<archive_filename>.tar.bz2 *

To copy a new file on the server from your Linux PC, open a file explorer and type

sftp://eigit.heig-vd.ch/var/www/public/rootfs/reptar

login with your einet account. If you prefer use the command-line, use scp.

REPTAR

Quick Start Guide

march 2013 - 25 - REDS

6.3 PROCEDURES FOR DEVELOPMENT IN THE EMBEDDED PROCESSOR WITHOUT OS

For development without OS we usually use Code Composer Studio and a JTAG
emulator. You can find information about how to use Code Composer Studio in the
document Utilisation_CCSv5.pdf

Remember that we use a special Toolchain for standalone projects without Linux: arm-
none-eabi.

As an example of project you can see the accelerometer test available on the
reptar_usr GIT repository or the ASP lab works.

6.4 PROCEDURES FOR DEVELOPMENT IN THE FPGA

6.4.1 Using the REPTAR base project

The REPTAR base project is an ISE project with the VHDL sources and UCF configuration
file necessaries for using the Spartan6 FPGA without communication with the CPU. The
only components instantiated are the tri-state buffers to select the direction of the GPIO
pins and a PLL that generate 300MHz and 100 MHz frequencies.

All the pins of the SP6 physically connected to other peripherals are set to their inactive
state (‘1’ or ‘0’ depending on the component).

The Reset button used is the button named “SP6 Config” on the FPGA board. This button
is connected to a Spartan3 pin and not directly relied to the SP6. For that reason, the
Reset of the SP6 in the base project works only if the SP3 is configured with the
standard REPTAR bitstream.

Differential input buffers are instantiated for use of the differential clock inputs from the
FMC boards (Mezzanine to Carrier clocks):

Clock0 positive FMCx_CLK0_M2C_P_i
Clock0 negative FMCx_CLK0_M2C_N_i
Clock1 positive FMCx_CLK1_M2C_P_i
Clock1 negative FMCx_CLK1_M2C_N_i

You can find the REPTAR base project on the folder:
reptar_hard\reptar_series_1\cpld_fpga\fpga_projet_base for series I version or at
reptar_hard\reptar_proto_2\cpld_fpga\fpga_projet_base for proto II version

Utilisation_CCSv5.pdf

REPTAR

Quick Start Guide

march 2013 - 26 - REDS

 The subfolder src contains the VHDL sources and the UCF constraints file
 The subfolder ise_v13_3 contains the ISE project file .xise. When you compile the

project, all the generated files are written to this folder
 The subfolder bitstream holds a copy of the last version of the standard bitstream

issue from the ISE project compilation
 The IP_core folder, if exists, contains the .cgp Core Generator project and a .xco

configuration file per IP core used
 The sim subfolder contains the test benches and scripts used for simulation

6.4.2 Using the REPTAR standard project

The REPTAR standard project allows running all the tests of the REPTAR board from the
CPU (under u-boot and Linux environments).

This bitstream is functional only if the SP3 is configured with the standard REPTAR
bitstream.

In this project the Local Bus component, that implements the communication between
CPU and FPGA, is instantiated. For additional information about the Local Bus see the
section Using the Local Bus on the Mix Development Procedures chapter.

The Reset button used is the same as for the base project, named “SP6 Config” on the
FPGA board.

The following components useful to manage peripherals are instantiated too: buzzer
controller, encoder sense detector, mini-lcd controller, touchpad controller, DDR
controller (coming soon).

Other components instantiated are:

 tri-state buffers to select the direction of the GPIO pins
 PLL that generate 300MHz and 100 MHz frequencies
 differential input buffers for FMC clocks

The REPTAR standard ISE project can be found on the folder

reptar_hard\reptar_series_1\cpld_fpga\fpga for series I version or at
reptar_hard\reptar_series_1\cpld_fpga\fpga for proto II version

 The subfolder src contains the VHDL sources and the UCF constraints file. If IP are

used, their VHDL entities and .ngc files are in a sub-folder of src
 The subfolder ise_v13_3 contains the ISE project file .xise. When you compile the

project, all the generated files are written to this folder

REPTAR

Quick Start Guide

march 2013 - 27 - REDS

 The subfolder bitstream holds a copy of the last version of the standard bitstream
issue from the ISE project compilation

 The IP_core folder, if exists, contains the .cgp Core Generator project and a .xco
configuration file per IP core used

 The sim subfolder contains the test benches and scripts used for simulation

6.4.3 ISE project compilation

The compilation of the ISE projects (base and standard) issues two kinds of binary files:

 .bin: used for configuring the FPGA from the CPU, this is a file without header
 .bit: used for configuring the FPGA with the Impact tool, this is a file with a

header

6.4.4 Spartan3 programming

Normally, the SP3 of the REPTAR board must always be configured with the REPTAR
standard bitstream.
This bitstream has the following functions:

 manage the different programming modes for the FPGA Spartan 6 (from the
CPU, from the PlatformFlash or JTAG header, or with a micro-USB cable)

 receive the bitstream from the CPU through dedicated GPIOs and send it to the
FPGA SP6

 implement the Local Bus to allow access from the CPU to the LEDs, switches,
push-buttons and GPIOs connected to the SP3

 transmit the reset signal from the “SP6 Config” push-button to an input of the
FPGA SP6

The SP3 has an internal persistent memory that holds a bitstream. This bitstream can
be automatically loaded to the SP3 on the power-on reset. In order to use this feature
you must configure the DIP switches SP3 8, 9 and 10 to “110” where ‘1’ is ON and ‘0’ is
OFF (mode internal master SPI). If you want to deactivate this feature and program the
SP3 only from JTAG you must set the DIP switches SP3 8, 9 and 10 to “101”.

The “SP3 NProg” button erases the SP3 configuration, and the LED “SP3 Not. Conf” is
ON when the SP3 is empty.

The switches “SP3 Configuration mode” (DIP SP3 numbers 8 to 10) allow selecting the
configuration mode between “Master SPI mode” (from flash) or “JTAG mode”
(bitstream loaded from your PC with the Impact tool and the Platform Cable).

 DIP SP3 (8..10) = “110” to select the loading from flash

REPTAR

Quick Start Guide

march 2013 - 28 - REDS

 DIP SP3 (8..10) = “101” to select the JTAG mode

Currently, all the REPTAR boards have the standard bitstream on their SP3 flash,
nevertheless if you want to update this bitstream with the last version or test your
own bitstream, you can follow the procedures explained here-after.

6.4.4.1 Programming the SP3’s flash with the REPTAR standard bitstream

1. Set DIP switches SP3 8, 9 and 10 to “110” where ‘1’ is ON and ‘0’
2. Connect the Xilinx Platform Cable USB to the SP3 header (see Figure 8 –

REPTAR FPGA, JTAG headers and SMT module connector)
3. Turn-on the board
4. Run the Impact tool
5. Open the project

reptar\publi\test\FPGAs_Flashing\Serie_I\Impact_Spartan3.ipf
6. Right-click on the SP3 chip and select "Program Flash and Load FPGA",

wait for the message "Program Succeeded"
7. Verify that the LED “SP3 Not. Conf” is OFF
8. Turn-off and then turn-on the board again, re-verify the LED
9. Push on the “SP3 NProg” button to erase the SP3. The bitstream must be

automatically reloaded

Figure 7 – REPTAR FPGA, SP6 and SP3 configuration LEDs and buttons

REPTAR

Quick Start Guide

march 2013 - 29 - REDS

6.4.4.2 Loading a different bitstream on the SP3

When debugging your VHDL description or during tests it can be useful to program the
FPGA SP3 without using the bitstream stored in flash. In this way you don’t overwrite
the functional bitstream, which will be still reloaded on power-on reset.

1. Set DIP switches SP3 to “1111111101” where ‘1’ is ON and ‘0’
2. Connect the Xilinx Platform Cable USB to the SP3 header (see Figure 8 –

REPTAR FPGA, JTAG headers and SMT module connector)
3. Turn-on the board
4. Run the Impact tool
5. Don’t open any project
6. Double-click on “boundary scan”
7. Right-click on an empty zone on the right window and choice “initialize

chain”, a chip appears on the right window (xc3s200an)
8. Assign the bitstream to the chip: browse on your PC and open your

bitstream file
9. Right-click on the SP3 chip and select "Program", wait for the message

"Program Succeeded"
10. Verify that the LED “SP3 Not. Conf” is OFF

Figure 8 – REPTAR FPGA, JTAG headers and SMT module connector

REPTAR

Quick Start Guide

march 2013 - 30 - REDS

6.4.5 Spartan6 programming

When debugging your VHDL description or during tests it can be useful to program the
FPGA SP6 without using the bitstream stored in flash. In this way you don’t overwrite
the functional bitstream, which will be still reloaded on power-on reset.

For programming the SP6 you can use a Xilinx Platform Cable or a micro-USB cable.
The micro-USB cable uses a Digilent SMT JTAG programming module integrated on the
board (on the bottom).

The switches “JTAG mode selection” (DIP SP3 number 2 and 3) allow to select the JTAG
programmer for the SP6/Platform Flash /FMC FPGAs between the Xilinx Platform Cable
USB or the SMT JTAG micro-USB.

 DIP SP3 (2..3) = “11” to select the JTAG header with the Platform Cable
 DIP SP3 (2..3) = “01” to select the SMT JTAG Digilent with the micro-USB

cable

6.4.5.1 Using the Xilinx Platform Cable USB

1. Set DIP switches SP3 to “1111111110” where ‘1’ is ON and ‘0’
2. Connect the Xilinx Platform Cable USB to the SP6 header (see Figure 8 –

REPTAR FPGA, JTAG headers and SMT module connector)
3. Turn-on the board
4. Run the Impact tool
5. Don’t open any project
6. Double-click on “boundary scan”, two chips appear on the right (flash and

SP6)
7. Right-click on an empty zone on the right window and choice “initialize

chain”
8. Assign bitstreams to the chips of the chain: choose “bypass” for the flash

(xcf32p) and browse for your bitstream for the SP6 (xc6slx150t)
9. Right-click on the SP6 chip and select "Program", wait for the message

"Program Succeeded"
10. Verify that the LED “SP6 Not. Conf” is OFF

6.4.5.2 Using a micro-USB cable

1. Set DIP switches SP3 to “1011111110” where ‘1’ is ON and ‘0’
2. Connect the micro-USB cable to the micro-USB connector of the SMT JTAG
3. Turn-on the board
4. Run the Impact tool

REPTAR

Quick Start Guide

march 2013 - 31 - REDS

5. Don’t open any project
6. Double-click on “boundary scan”, two chips appear on the right (flash and

SP6)
7. Right-click on an empty zone on the right window and choice “initialize

chain”
8. Assign bitstreams to the chips of the chain: choose “bypass” for the flash

(xcf32p) and browse for your bitstream for the SP6 (xc6slx150t)
9. Right-click on the SP6 chip and select "Program", wait for the message

"Program Succeeded"
10. Verify that the LED “SP6 Not. Conf” is OFF

6.4.6 Platform Flash programming

The FPGA Spartan6 loses its configuration when the power is OFF. In order to keep its
configuration, the bitstream is hold in a flash memory that can load the SP6 on each
power-on.

The Platform Flash (PFF) must be programmed with a .mcs file. This file is generated
from the .bit file using the Impact tool. You will find the steps to follow for generating
this kind of file in this section.

Currently, all the REPTAR boards have the standard bitstream on their SP6 Platform
Flash, nevertheless if you want to update this bitstream with the last version, you can
follow the procedure explained here-after.

6.4.6.1 Loading the standard bitstream

1. Set DIP switches SP3 to “1011111110” for micro-USB or “1111111110” for
Xilinx Platform Cable

2. Connect the micro-USB cable to the micro-USB connector of the SMT JTAG
or connect the Xilinx Platform Cable USB to the SP6 header (see Figure 8 –
REPTAR FPGA, JTAG headers and SMT module connector)

3. Turn-on the board
4. Run the Impact tool
5. Open the project

reptar\publi\test\FPGAs_Flashing\Serie_I\Impact_PFF_Spartan6.ipf
6. Right-click on the “xcf32p” chip and select "Program", wait for the

message "Program Succeeded"
7. Push on the “SP3 NProg” button to reset the SP3 configuration. The

bitstream must be automatically reloaded on SP6 from the Platform Flash
8. Verify that the LED “SP6 Not. Conf” is OFF

REPTAR

Quick Start Guide

march 2013 - 32 - REDS

9. Turn the encoder to the right and verify that the LED7 turns ON, then turn
the encoder to the left and verify that the LED6 turns ON

6.4.6.2 Generating your own flash configuration file

1. Compile your ISE project to get the .bit output file
2. Open the Impact tool
3. Don’t open any project
4. Double-click on “Create PROM File”
5. Step 1. Select: “Xilinx Flash / PROM” and then click on the arrow
6. Step 2. Select: “Platform Flash” and “xcf32p”, and then click on “Add

Storage Device”
7. Click on the green arrow
8. Step 3. Enter the “Output File Name” and “Output File Location”
9. Choose “No” for “Enable Revisioning” and “No” for “Enable Compression”
10. Push OK
11. On the pop-up message “Start adding…” push OK
12. Browse for your SP6 .bit file and click on “open”
13. Answer “No” to the question “Would you like to add another…”
14. Click OK to continue
15. Click on an empty zone on the right window and select “Generate File…”
16. A blue message “Generate Succeeded” is shown
17. Verify that a new .mcs file was written to your output folder

6.4.6.3 Programming the flash with your own file

18. Set DIP switches SP3 to “1011111110” for micro-USB or “1111111110” for
Xilinx Platform Cable

19. Connect the micro-USB cable to the micro-USB connector of the SMT JTAG
or connect the Xilinx Platform Cable USB to the SP6 header

20. Turn-on the board
21. In Impact, double-click on “boundary scan”, two chips appear on the right

(flash and SP6)
22. Right-click on an empty zone on the right window and choice “initialize

chain”
23. Assign bitstreams to the chips of the chain: choose browse for your

bitstream .mcs file for the flash (xcf32p) and choose “bypass” for the SP6
(xc6slx150t)

24. On the “Device Programming Properties” of the PROM, under “PROM
Specific Properties” select “Parallel Mode”

REPTAR

Quick Start Guide

march 2013 - 33 - REDS

25. On the “Device Programming Properties” of the PROM, under “Advanced
PROM Programming Properties” select “During Configuration: PROM is
Master”

26. Select the clock source: Internal Clock (40MHz)
27. You can save your Impact project and when you want to program the flash

you can follow the procedure Loading the standard bitstream but with
your own project

REPTAR

Quick Start Guide

march 2013 - 34 - REDS

6.5 PROCEDURES FOR MIX DEVELOPMENT USING EMBEDDED PROCESSOR AND FPGA

6.5.1 Board setup

6.5.1.1 SP3 DIP switches

The switch “Local Bus enable” (DIP SP3 number 1) when it’s active, allows the Spartan
3 to put data on the Local Bus when the CPU performs a read operation. This switch
must be ON when you attempt to read a Spartan3 register from the CPU.

 DIP SP3 (1) = “1” to enable the Local Bus
 DIP SP3 (1) = “0” to disable the Local Bus

The switch “Configuration mode SP6” (DIP SP3 number 4) allows to choose if the
bitstream of the SP6 will be loaded from the flash or from the CPU.

 DIP SP3 (4) = “1” to load the bitstream from the flash
 DIP SP3 (4) = “0” to load the bitstream from the CPU

The switches “SP3 Configuration mode” (DIP SP3 numbers 8 to 10) allow selecting the
configuration mode between “Master SPI mode” (from flash) or “JTAG mode”
(bitstream loaded from your PC with the Impact tool and the Platform Cable). For mix
development ensure that the SP3 loads its bitstream from the flash:

 DIP SP3 (8..10) = “110” to select the loading from flash

6.5.1.2 Standard bitstreams

For mix development, the SP3 must be configured with the standard bitstream. See
the section Programming the SP3’s flash with the REPTAR standard bitstream for
details in the procedure.

The bitstream of the SP6 must be the standard bitstream or a variation of this
bitstream including the instantiation of the Local Bus controller. The bitstream stored
in the Platform Flash must be always the standard one, if you need a different one, use
the .bin file and send-it from the CPU to the SP6 by using the u-boot or Linux drivers.
See the section Programming the SP6 from the CPU or the section Loading the
standard bitstream

REPTAR

Quick Start Guide

march 2013 - 35 - REDS

6.5.2 Using the Local Bus

The Local Bus allows the CPU to access the peripherals of the REPTAR FPGA board
connected to the Spartan3 or Spartan6 FPGAs.

The Local Bus may also be used to transfer specific data from applications running on
the CPU to the FPGA.

From the CPU point of view, the FPGA is a memory-mapped device. All the data
transfers between CPU and FPGAs use register addresses.

The registers concerning peripheral access through the Spartan3 are defined in the
document Spartan3_Registers_v1.xlsx

The registers concerning peripheral access through the Spartan6 are defined in the
document Spartan6_Registers_v1.xlsx

From the CPU side, we use the GPMC (General Purpose Memory Controller) to
configure a NOR-like 16-bit device: the FPGAs.
The Spartan3 and the Spartan6 share the memory space mapped by the GPMC chip
select CS3 (128 MB max), nevertheless, only 25 IO lines are wired between CPU and
FPGA, this allow to address 32Mbytes maximum for an 8-bit device and 64Mbytes for a
16-bit device.

The GPMC configuration is done during the board initialization under the U-boot
environment for the CS3.

Currently map is (versions before May 2013):

 Spartan6 registers are in the memory space going from 0x1800 0000 to
0x18FFFFFF (16MB)

 Spartan3 registers are in the memory space going from 0x1900 0000 to

0x19FFFFFF (16MB)

 Unused zone from 0x1A000000 to 0x1FFFFFFF (96 MB)

In a further version, the map will change to:
 Spartan6 registers in the memory space going from 0x1800 0000 to

0x19FFFFFF (32MB)

 Spartan3 registers are in the memory space going from 0x1A00 0000 to
0x1BFFFFFF (32MB)

Spartan3_Registers_v1.xlsx
Spartan6_Registers_v1.xlsx

REPTAR

Quick Start Guide

march 2013 - 36 - REDS

 Inaccessible zone from 0x1C000000 to 0x1FFFFFFF (64MB)

The Local Bus is 16-bit data and is multiplexed with the low 16 address bits.

Access to the Spartan6 and Spartan3 registers was implemented as asynchronous
operations, because in most cases the CPU needs to read or write a single register, so
high throughput is not necessary.

From the FPGAs point of view, this means that the Local Bus controller runs at the
FPGA clock frequency, and the clock coming from the GPMC is not used. The controller
decodes the address and then performs write or read operations to/from the internal
registers or the peripherals.

There is another chip select going from CPU to FPGA, the chip select CS4 of the GPMC
used to allow the CPU access to the DDR connected to the Spartan6. In this case, the
Local Bus is used in synchronous mode, that is, the GPMC clock is used to run the state
machine of the Local Bus Controller of the FPGA.

Addresses between 0x20000000 and 0x23FFFFFF (64 MB) access the first quarter of
the DDR of the REPTAR FPGA board. In order to be able to access the three other
quarters, a paging method can be implemented using Spartan6 registers.

In synchronous mode, the frequency of the GPMC clock used is 62.5MHz. Currently,
transfers use bursts of 4 x 16 bits, the maximum being 16 x 16 bits.

6.5.2.1 SP6 DIP switches

There are 10 DIP switches connected to the FPGA Spartan6, only the first is reserved
for a particular functionality, the rest are available for the user.

The switch “Local Bus enable” (DIP SP6 number 1) when it’s active, allows the Spartan
6 to put data on the Local Bus when the CPU performs a read operation. This switch
must be ON when you attempt to read a Spartan6 register from the CPU.

 DIP SP6 (1) = “1” to enable the Local Bus
 DIP SP6 (1) = “0” to disable the Local Bus

6.5.3 Using the REPTAR standard ISE project

The REPTAR standard project allows running all the tests of the REPTAR board from the
CPU (under u-boot and Linux environments).

REPTAR

Quick Start Guide

march 2013 - 37 - REDS

This bitstream is functional only if the SP3 is configured with the standard REPTAR
bitstream.

In this project the Local Bus component, that implements the communication between
CPU and FPGA, is instantiated. For additional information about the Local Bus see the
section Using the Local Bus on the Mix Development Procedures chapter.

The Reset button used is the same as for the base project, named “SP6 Config” on the
FPGA board.

The following components useful to manage peripherals are instantiated too: buzzer
controller, encoder sense detector, mini-lcd controller, touchpad controller, DDR
controller (coming soon).

Other components instantiated are:

 tri-state buffers to select the direction of the GPIO pins
 PLL that generate 300MHz and 100 MHz frequencies
 differential input buffers for FMC clocks

The REPTAR standard ISE project can be found on the folder

reptar_hard\reptar_series_1\cpld_fpga\fpga for series I version or at
reptar_hard\reptar_proto_2\cpld_fpga\fpga for proto II version

 The subfolder src contains the VHDL sources and the UCF constraints file
 The subfolder ise_v13_3 contains the ISE project file .xise. When you compile the

project, all the generated files are written to this folder
 The subfolder bitstream holds a copy of the last version of the standard bitstream

issue from the ISE project compilation
 The IP_core folder, if exists, contains the .cgp Core Generator project and a .xco

configuration file per IP core used
 The sim subfolder contains the test benches and scripts used for simulation

6.5.4 Programming the SP6 from the CPU

6.5.4.1 Board setup

The switch “Configuration mode SP6” (DIP SP3 number 4) allows to choose if the
bitstream of the SP6 will be loaded from the flash or from the CPU.

 DIP SP3 (4) = “1” to load the bitstream from the flash
 DIP SP3 (4) = “0” to load the bitstream from the CPU

REPTAR

Quick Start Guide

march 2013 - 38 - REDS

6.5.4.2 U-boot

TODO

6.5.4.3 Linux

The SP6 can be programmed from Linux through the /dev/fpgaloader driver entry
point. When using the Archlinux-tests rootfs, the load_fpga.sh script in /root/tests
allows doing this in an easy way.

This file system is available at http://eigit.heig-vd.ch/public/rootfs/reptar/, its name is
ArchLinux-filesystem-tests.tar.bz2, see the procedure to prepare a “Master” SD card if
you don’t have an SD card with this rootfs.

Syntax:

 ./load_fpga.sh <bitstream_file.bin>

Example:

[root@reptar tests]# ./load_fpga.sh spartan6_bitstream_top.bin

fpgaloader v0.92 ready

Bitstream file is spartan6_bitstream_top.bin !

fpga_init_load :in slave serial case

reptar_fpga_config_slave_serial call success

wait inib low: Current time = 0 initb = 0

spartan_serial_init returned with ret = 0

Starting reptar FPGA download

...

...

...

...

...

...

...........................3337+1 records in

3337+1 records out

1708550 bytes (1.7 MB) copied, 9.18951 s, 186 kB/s

gpmc_fpga_init:357: registered misc device 58

ioctl cmd: FPGA_RD_REG = c0047400 FPGA_WR_REG=c0047401

reptar-fpga ready

[root@reptar tests]#

Procedure:

1. Set up the REPTAR board as explained above
2. Insert a “Master” SD card with the tests rootfs into the board
3. Connect a mini-USB cable to your PC and open a serial terminal

http://eigit.heig-vd.ch/public/rootfs/reptar/

REPTAR

Quick Start Guide

march 2013 - 39 - REDS

4. Turn on the board
5. If initialization stops on uboot, type boot to boot Linux and load the rootfs

from the SD card
6. Wait for the Linux initialization end and then log in
7. Change the directory to tests
8. Verify that the red LED “SP6 NProg” is ON (close to the top-right corner of the

board)
9. Call the script with your bitstream file as parameter
10. Wait until the prompt appears again
11. Verify that the red LED “SP6 NProg” is OFF

REPTAR

Quick Start Guide

march 2013 - 40 - REDS

7. TROUBLESHOOTING

Are the jumpers in the good position?
Are the DIP switches SP3 in the good position?
Are the SP3 and SP6 configured?
Are the SP3 and SP6 bitstreams updated?
Is the SD card inserted?
Does the SD card contain a valid kernel and/or rootfs?

REPTAR

Quick Start Guide

march 2013 - 41 - REDS

8. ADDITIONAL INFORMATION

8.1 REVISION HISTORY

Chapter Date Version Changes Made

All March 2013 1.0 First publication.

Table 1 - Revision History

8.2 CONTACT

For the most up-to-date information or remarks about this document contact the REDS
institute:

REDS
Heig-vd
Route de Cheseaux 1
CH-1401 Yverdon-les-Bains

reds@heig-vd.ch

mailto:info@reds.ch

