PERPLEXUS
PERvasive computing framework for modelling comPLEX virtually-Unbounded Systems
“The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it”

Mark Weiser, 1952-1999
“The Computer for the 21st Century”, September 1991

PERPLEXUS is a European STREP project funded by the “Simulating Emergent Properties in Complex Systems” initiative. The consortium is coordinated by the HEIG-VD (CH), and is composed by CNRS (FR), UPC (SP), EPFL (CH), UNIL (CH), TUL (PL), UJF (FR), and SCIPROM(CH).
The PERPLEXUS approach
Within the framework of "emerging information technologies", we have developed a new kind of distributed computing substrate that could appear in the near future, with the advent of a new era of computing, coming after the mainframe era, and the PC era. In this 3rd era of computing, we are likely to see a myriad of ubiquitous devices with large computing and sensory capabilities in our environment. Such devices will interact with each other using wireless communication and coordinate to seamlessly help people in their daily tasks.

Anticipating this new era of computing, we have envisioned a solution for simulating complex systems, inspired from the distributed computing projects, but this time using the computational resources of ubiquitous devices in our environment: our cellular phones, PDAs, the alarm clock radio on our night table, our children's electronic toys and robots, our microwave oven, etc.

[image: image32.emf]Robot #1

AP1

Ubi

chip

I

E

O

P

N

U

S

Robot #2

AP2

Ubi

chip

I

E

O

P

N

U

S

Robot #3

AP3

Ubi

chip

I

E

O

P

N

U

S

Generationrelated

communications:

-Initial parameters

-Fitness broadcast….

Genomic

information

ANN instantiation

Epigeneticbasedorders

and sensorfeedbcak

Actuator

commands

Sensordata

PERvasive computing framework for modelling comPLEX virtually-Unbounded Systems

The PERPLEXUS project aims to develop a scalable hardware platform made of custom reconfigurable devices endowed with bio-inspired capabilities for enabling the simulation of large-scale complex systems and the study of emergent complex behaviours in a virtually unbounded wireless network of computing modules. At the heart of these ubiquitous computing modules (ubidules), we use a custom reconfigurable electronic device capable of implementing bio-inspired mechanisms such as growth, learning, and evolution. This ubidule bio-inspired chip (ubichip) is associated to sensory elements and wireless communication capabilities. Ubidules and ubichips can be integrated in the marXbot robotic platform, which enhances the sensing and actuating capabilities of the overall platform. Such an infrastructure provides several advantages compared to classical software simulations: speed-up, an inherent real-time interaction with the environment, self-organization capabilities, simulation in the presence of uncertainty, and distributed multi-scale simulations.
We have shown a series of complex models in the domains of neuroscience and social sciences that can take advantage of such a modelling framework for studying the emergent behaviours arising from such models. Our solution is based on a family of models that exploits the Perplexus platform, by interacting with the user and with other devices, thus providing a means for simulating embedded and situated versions of complex systems.
The PERPLEXUS hardware platform

The complete hardware platform is thus composed of 3 components: (1) a network of ubiquitous computing modules called ubidules, (2) each ubidule contains two ubidule bio-inspired chips – the ubichips, and (3) such devices can also be integrated on the marXbot robotic platform.
Ubidule
We have developed a set of ubidules with the aim of demonstrating a "scale model" of tomorrow's use of ubiquitous computing for modelling complex systems. A ubidule is a PDA-like device running an agent framework that enables users to run complex systems models in a distributed way, interacting with the environment.
[image: image2.jpg]

[image: image3.jpg]

Ubidule - UBIquitous computing moDULE

The ubidule platform is composed of two electronic boards mainly featuring two ubichips, an ARM processor running Linux, a 3.4 Mgates FPGA, and support for several peripherals. One of the major features of the ubidule platform is its modularity and flexibility. It is easily customizable for each one of the target applications, and is so a complete and efficient modelling platform. For the sake of modularity the ubidule has been decomposed into two boards: a mother board containing the CPU, the FPGA, and peripheral support, and a daughter board mainly containing two ubichips, that can also be integrated on the marXbot robot.
[image: image4.jpg]AgrYYYTYeYy
o

YyYRTVYYIYY

Board containing two Ubichips that can be integrated on the Ubidule or on the marXbot

A second mini-PCI socket supporting a colibri board from Toradex provides the possibility of including a high-end embedded processor. The colibri board contains an ARM processor, that can be either an Xscale PXA270 or PXA320, and enough memory resources for running well supported operating systems as GNU-Linux or Windows CE. The colibri board constitutes thus the first step toward the desired flexibility and modularity of our ubidules, by providing the advantages of a performant processor, a well supported operating system, gcc tools, and a large number of software resources as application programs, services, and drivers.
Ubichip
The Ubichip is a reconfigurable digital circuit endowed with bio-inspired reconfiguration mechanisms like self-reconfiguration and dynamic routing capabilities, for supporting self-replicating and self-connecting adaptive hardware systems. The reconfigurable array can also be configured as an SIMD multiprocessor architecture.
[image: image5.png]i n e ip

Ubichip layout

The ubichip is the core device of the whole hardware platform, which provides the reconfigurability support for implementing dynamic hardware architectures. Real complex systems are dynamic, their internal components and interactions are constantly changing according to the interaction of the world with its intrinsic dynamics. This dynamic aspect is precisely the main feature of the ubichip. The ubichip is a reconfigurable digital circuit that allows the implementation of complex systems with dynamic topologies. A fine-grained dynamic partial reconfiguration permits to easily modify the system from an external processor, but built-in self reconfiguration mechanisms permits also to modify it internally in a completely autonomous and distributed way. Moreover, dynamic routing allows also to create and destroy internal connections in the circuit.
The reconfigurable array of the ubichip consists in a bi-dimensional regular array of reconfigurable cells called macrocells. A macrocell is composed of a self-replication (SR) unit, a dynamic routing (DR) unit, and four ubicells, being this last one the basic computing unit of the ubichip. The next figure depicts a top level view of a macrocell, which is composed of three layers: a ubicell array layer, a dynamic routing layer, and a self-reconfiguration layer.

[image: image6]
Overview of the ubichip internal architecture

A ubicell is the basic computing unit of the ubichip, which contains four 4-input LUTs and four ip-ops. The ubicell counts two basic operating modes: native mode and SIMD mode.
The self-reconfiguration layer allows a given macrocell to access the configuration bit-string of a neighbour macrocell. In this way, a macrocell can either read the configuration of o set of neighbours, or configure them. Allowing a part of the system to recover the configuration bit-

[image: image1]string of its neighbours and send it to another (remote) macrocell that will use it to configure its neighbour. This basic form of replication is the basis for implementing self-replicating systems.
Self-replication algorithm on the ubichip

The dynamic routing layer permits to create connections between sources and targets by dynamically configuring multiplexers, and by letting the data follow the same path for each pair of source and target. A phase of path creation executes a breadth-first search distributed algorithm, looking for the shortest path. Sources and targets can decide to connect to their corresponding unit at any time by launching a routing process.

[image: image7]
Dynamic routing on the ubichip: route creation, destruction, and modification.
MarXbot
To extend the exploration of complex systems in real-world applications we decided to embed the ubichip in a robotic platform. We therefore designed the marXbot mobile robot, taking care of several specific aspects: large number of robots (more than 20), facility of experimentation, ability to embed the ubidule as one module, and possibility to run long experiments.

[image: image8] [image: image9.jpg]

MarXbot robot

The marXbot robot is a flexible mobile robotic platform. It is made of stacked modules of a diameter of about 17 cm. The modularity of the marXbot robot is based on a common CAN bus and a LiION battery based power supply, both shared by all modules.
The exploration of complex systems requires the use of groups of robots during long periods, for instance under the control of genetic algorithms. Because of the battery-based power supply of the robots, long experiments are problematic. Therefore the marXbot is powered by a 3.7 V, 10 Ah Lithium-Polymer battery which is hot-swappable. The hot-swapping capability is provided by a super- capacitor which maintains the power supply of the robot for 10 s during battery exchange. A battery exchanger has been designed to automatically extract the battery from a running marXbot and replace it by a charged one in a delay below 10 seconds.

[image: image10.jpg]

The battery station able to exchange the battery of the marXbot during operation.
Programming Tools
A set of software tools have been developed in the framework of the perplexus projects for dealing with each of the different hardware components involved in the projects. We have thus developed specific programming and simulation tools for the ubichip, the ubidule, and the marXbot.

The ubimanager is a software tool used for designing, simulating, emulating, debugging, configuring, and monitoring the systems to be implemented in the ubichip. It allows to graphically configure each one of the three reconfigurable layers of a ubichip, and then displays the system state during a simulation or the execution on a ubidule at run-time. It can run on a base-station or on an embedded platform as the ubidule. The ubimanager permits also a shared access to a ubichip execution, allowing in this manner a collaborative development where several developers in remote places can visualise simoultaneously the evolution of an execution.
[image: image11.jpg]Eait

& Eile

 INCLUDEPICTURE "http://www.perplexus.org/project/results/assets/ubimanager_screenshot.png" * MERGEFORMATINET [image: image12.png]window _telp

2 He Gt Sndete Yew SRAM ook

 INCLUDEPICTURE "http://www.perplexus.org/project/results/assets/ubimanager_on_marXbot.png" * MERGEFORMATINET [image: image13.png]

Platform programming tools - Illustration of the Ubimanager running on the ubidules, on the marXbot robots and on a personal computer

The modelling platform of the Ubidules programming methodology extensively relies on the Java Agent Development Environment (JADE) modelling Framework. It provides a unified solution for application specification, software-based simulation and hardware implementation/ monitoring. The cornerstone of the so-called BAF - Bio-inspired Agent Framework is an agent compiler that enables compiling JADE application agents into polymorphic agents capable of being executed in software, or hybrid hardware / software mode. The set of tools includes the so-called JubiSplitter, Jubicompiler, and Jubiassembler. These tools enable the user to implement software, hardware and hybrid software/hardware complex system models.

[image: image14]
Distributed agent approach of the Bio-inspired Agent Framework (BAF)

[image: image15]
HW/SW partitioning approach performed by the Jubitools

The marXbot robot is controlled with the ASEBA framework. Each sensor and each actuator on the robot is directly controlled by an embedded microcontroller, all them run an instantiation of the ASEBA framework. This framework transmits event messages over a CAN bus to exchange commands, to read sensors etc. We have implemented an ASEBA node in the ubidule making it compatible with the software architecture of the marXbot. The ASEBA framework allows also to easily control the whole set of microcontroller by a script language that makes the writing of the code transparent for being run either on the real robot or on the Enki simulator.
Applications
A series of modelling applications have been implemented on the hardware substrate: culture dissemination models, biologically-plausible spiking neural models, synaptogenesis models, as well as evolvable hardware applications and an embedded wearable system for human activity recognition. Out of these applications, two main applications were used for benchmarking purposes: a biologically-plausible spiking neural network model and a culture-dissemination model.
Neural Modelling
The modelling of bio-mimetic artificial neural network of the PERPLEXUS project allowed us to implement realistic virtual electrodes. This outcome opened the way to record neuro-mimetic signals, called electrochipograms (EChG), characterized by dynamics and features similar to those recorded in living brain structures, such as electroencephalography (EEG), electrocorticography (ECoG) and local field potentials (LFP).
We have shown that artificial neural networks implemented on the Ubidules can be connected into a hierarchical topology suitable to study and detect, by means of electrochipography, some “states” of the overall “brain” that can be compared to real brain recordings. Firstly, we simulated the activity of hierarchically organized spiking neural networks characterized by an initial developmental phase featuring cell death followed by spike timing dependent synaptic plasticity in presence of background noise.

[image: image16.png]

Neural activity captured from the ubidules

Our experiments were compared to a small set of recordings performed in patients suffering of primary insomnia whose EEG recordings were analyzed during several sleep phases, before and after a clinical treatment. The novel approach presented here allows the simulation of neural systems and offers the possibility to study emerging complex behaviours in a virtually unbounded wireless network of computational modules.

The bio-inspired mechanisms of the chip allowed us to explore a different approach for the modelling of ontogenetic neural networks by exploiting the dynamic hardware architecture in a completely autonomous and distributed way. This dynamic aspect allows a part of the system to auto-replicate, and auto-connect with other parts of the circuit. In the same manner, the opposite is also possible, to disconnect and to erase blocks on the circuit.

These features allowed us to implement so-called artificial ontogenetic neural networks. These networks are able to grow driven by the interaction with the environment through the processes of neurogenesis (neural self-replication), and synaptogenesis (dynamic creation of connections between neurons).
The next figure illustrates the complete ontogenetic process with a series of screen-shots obtained from the ubimanager tool. Initially, a single neuron is configured on the ubichip (top left screen-shot). A replication process can be triggered on this neuron which can be copied somewhere else in the circuit. A first step is to select where will it be copied, and create a dynamic routing unit to that location (top centre). Then the con_guration is sent serially from the initial location to the destination, in order to use this information for creating an exact copy of the initial neuron after a certain number of clock cycles (top right). Now we have two neurons that can again replicate both of them simultaneously, so new target locations are selected (bottom left) for obtaining 2 newly created neurons (bottom centre). At the end, we obtain a circuit fully populated of neurons (bottom right), which in parallel had also performed a probabilistic synaptogenic process that permitted them to interconnect their dendrites and axons.

[image: image18]

Sequence of screen-shots of the dynamic routing layer during the development

of a neurogenetic and synaptogenic network with 16 4-inputs neurons

Culture Dissemination modelling
Culture dissemination is the process whereby information is transmitted and adopted by individuals capable of social learning. In particular, we are interested in how the microscopic details of transmission at the individual level make such information change at the population level. We thus regard culture dissemination as a process developing from the bottom up rather than from the top down.

The culture dissemination modelling in the Perplexus project dealt with models of culture dissemination of cooperative behaviour. In particular, our goals were (i) to devise models of the cultural evolution (i.e. dissemination) of cooperation in networked societies, and (ii) to study them by means of computer simulations. We have studied the effects of conformity bias in the evolution of cooperation and the effects of having directed and weighted graphs as population structures for the evolutionary dynamics of cooperation.
In our studies we have found that when social networks are highly heterogeneous and less clustered, conformity makes the evolution of cooperative behaviour harder to achieve. We have also found that the social biases induced by the non-reciprocity, modelled in our case as directed and weighted graphs, can lead to an amplification of cooperation in heterogeneous structures, beyond what is usually obtained when considering simple, undirected graphs. We thus conclude that both psychological and sociological biases can play a very important role on the cultural evolution of cooperation.
In the framework of the Perplexus project, we have also exploited the marXbot robotic platform in order to harness the physical aspects from real devices to strengthen the simulation of social systems. The purpose was to explore the basic ideas that allow us to think about complexity in the context of Perplexus as a physical substratum for the embodiment of questions related to cognition and the material realization of philosophical thought-experiments.

In order to study the main aspects of such embodiment we implemented a collective robotic foraging task. The task consists on exploring an area and gathering pre-specified objects from the environment; thereafter, foragers must find special targets which are common to the whole population. Robots communicate in an intrinsic way the estimation about how near they are from a target, by displaying colours through LEDS, and these estimations guide the navigation of the whole population when looking for these specific areas.

[image: image19.emf][image: image20.jpg]

Foraging task on the Enki simulator and on the marXbot robots on the experimentation arena

In our experiments we have found that a social approach composed of a set of robots with distributed knowledge of the environment performs better than robots with absolute knowledge (GPS-like positioning), when attempting to reach targets on an arena under the presence of obstacles.

Dynamic Routing Unit

Self-Reconfiguration Unit

General Purpose Computation Unit.

Ubichip Block Diagram

Macrocell

� EMBED Visio.Drawing.11 ���

ID modification & route creation

Route destruction

Dynamic route creation

Unrouted initial system

myAgent.jubi

JubiSplitter

Software behaviour and hw envelope

hardware kernel

U

myAgent.java

myAgent.ubi

JAVAC

JubiCompiler + UbiAssembler

myAgent.bin

myAgent.class

E

E

E

E

E

[image: image21.emf]FU

RU0

RU1

RU1

FU

RU0

RU1

RU1

RU0

FU

RU0

RU1

RU1

RU0

FU

Sending/

receiving

configuration

Being

duplicated/

created

Step 1 Step 2 Step 3

[image: image22.jpg]

[image: image23.jpg]

[image: image24.jpg]192.168.0.9

192.168.0.6

192.168.0.10

192.168.0.5

192.168.0.11

[image: image25.png]Ubichip

MC [MC | MC | MC | MC | MC | MC | MC
MC [MC | MC | MC | MC | MC | MC | MC
MC [MC | MC | MC | MC | MC | MC | MC
MC [MC | MC | MC | MC | MC | MC | MC
MC [MC | MC | MC | MC | MC | MC | MC
MC [MC | MC | MC | MC | MC | MC | MC
MC [MC | MC | MC | MC | MC | MC | MC
MC [MC | MC | MC | MC | MC | MC | MC

System manager

External | i Memory uP External
SRAM N7 controller Interface [y T CPU
i —————————————— Sequencer K— i

[image: image26.wmf][image: image27.emf]FU

RU0

RU1

RU1

FU

RU0

RU1

RU1

RU0

FU

RU0

RU1

RU1

RU0

FU

Sending/

receiving

configuration

Being

duplicated/

created

Step 1 Step 2 Step 3

[image: image28.png]

[image: image29.png]

[image: image30.png]

[image: image31.png]

_1335792196.pdf
900000@00000000

eoo oooooooooo
dboogpooooo

gOO%O

.¢°¢°¢ ¢.§00 0'9»'0’9&'%:8
eooﬁaoo,eoooooooo
seeuiseneeses
a8 B Be oo o
08 9e we) p

003000_000 00000

eoo oooooooooog
dbooooooooo

4 29 @
.'
w‘ﬁﬁhﬁbodﬁﬁﬁ@ﬁb

GEEH SR
2% 90 9%
eooooqpoooooeoo

gOOOO

000000900000@00
¢) B

000000?000@0 ,0’0

00000? OOOOOOOOO

‘p
eoo

dbo:gpooooo

e
,,ondhooeoo
dbo

0)
(2
e s
00 + ¢ 0 ® “‘0 5
08700, 0
i &.@, Bals L0

COO0 o
90, ¢0
el Wl @o
.00&’

X COREEREEE)
O~ S L~ >

{pgqu:od') B8
eoea aoooooeoo

S5

o‘ooeoo oo,opoo o,_,_,o 08 20
semasllls ° H o =

wo#‘o W:¢¢¢W¢¢ \g& <

1',0 ' ‘ * ‘d "".o Bo

B "r*o"\\"w‘rﬂ"\‘

o
uf*ﬁwﬁ@bdﬁwﬁwwb

_1335857104.pdf

_1335787527.vsd
FU

RU0

RU1

RU1

FU

RU0

RU1

RU1

RU0

FU

RU0

RU1

RU1

RU0

FU

Sending/receiving configuration

Being duplicated/created

Step 1

Step 2

Step 3

